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Abstract. Linear advection of a scalar quantity by a specified velocity field arises in a number of
different applications. Of particular interest here is the transport of species and energy in low Mach
number models for combustion, atmospheric flows, and astrophysics, as well as contaminant transport
in Darcy models of saturated subsurface flow. An important characteristic of these problems is that
the velocity field is not known analytically. Instead, an auxiliary equation is solved to compute
averages of the velocities over faces in a finite volume discretization. In this paper, we present a
customized three-dimensional finite volume advection scheme for this class of problems that provides
accurate resolution for smooth problems while avoiding undershoot and overshoot for non-smooth
profiles. The method is an extension of an algorithm by Bell, Dawson and Shubin (BDS), which was
developed for a class of scalar conservation laws arising in porous media flows in two dimensions. The
original BDS algorithm is a variant of unsplit, higher-order Godunov methods based on construction
of a limited bilinear profile within each computational cell. Here we present a three-dimensional
extension of the original BDS algorithm that is based on a limited trilinear profile within each cell.
We compare this new method to several other unsplit approaches, including piecewise linear methods,
piecewise parabolic methods, and wave propagation schemes.
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1. Introduction. The literature on numerical methods for hyperbolic partial
differential equations focuses on general systems of conservation laws, particularly
the compressible Euler equations (see [20], e.g., for an overview of the literature).
However, there are a number of important problems in science and engineering where
we need to solve linear advection problems of the form

st + (us)x + (vs)y + (ws)z = 0, (1.1)

where s = s(x, y, z, t) is a scalar field and u = (u, v, w) represents a known velocity
field. Important examples of this type of problem arise in projection-based algorithms
for incompressible and more general low Mach number flows in which there is some
constraint on the divergence of u. Applications of these low Mach number projection
algorithms include low Mach number terrestrial combustion [14], nuclear flame simu-
lation [6], low Mach number stratified atmospheric [33] and astrophysical flows [28],
as well as general variable-density incompressible flow [2]. In these cases the density,
species, and other scalar quantities are advected by a velocity field that is calculated
before the advection step is performed. Advection problems also arise in contaminant
transport in saturated groundwater flow [29]. In several of the above problems, the
full evolution equation for s often includes a right hand side representing reactions,
diffusion or other processes. However, discretization approaches typically separate
the computation of the advective flux from the treatment of the other terms. In
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particular, diffusion is typically treated in a form in which explicit hyperbolic fluxes
appear as source terms in an implicit discretization of diffusion; reactions are typically
included via operator splitting. Consequently, here we will focus on the homogeneous
system; the reader is referred to the literature cited above for discussion of how to
incorporate other processes.

The target application of the algorithm places several constraints on the numer-
ical method. First, in most of these applications the velocity field is determined by
solving a constraint equation that explicitly encapsulates a specific discrete form of
the divergence of the velocity field with which we want the hyperbolic discretization
to be consistent. For low Mach number flows u is constructed using a projection that
enforces the divergence constraint; for contaminant transport, u is determined from
Darcy’s law and incompressibility. Furthermore, we only have a limited characteriza-
tion of the velocity field, typically integral averages of the normal component on faces
of grid cells. Another aspect of the class of problems being considered is that they
can be highly sensitive to overshoot and undershoot. For example, many chemical
reaction systems are ill-defined when a species has a negative concentration. Simi-
larly, errors associated with overshoot in a species concentration can be significantly
enhanced by reaction. Thus, we would like a method that provides an accurate dis-
cretization and preserves the shape of advected profiles while avoiding overshoot and
undershoot. One final consequence of the type of problems we consider is that the
computational cost is dominated by elliptic solvers, reaction networks, and/or calls
to the equation of state, so the overall cost of advection is minor in comparison; thus
accuracy is of more importance than cost in choosing the advection algorithm.

There is a vast literature on numerical methods for conservation laws, all of which
can potentially be adapted to advection by a known velocity field. It is beyond the
scope of this paper to survey all of that work; however, we will briefly describe some
of the main themes underlying various approaches. We first note that dimensional
operator splitting does not work well for advection by a non-constant divergence-free
velocity field. In a dimensionally split approach, the fluid can experience an artificial
compression in one sweep combined with an artificial expansion in another sweep,
which can lead to significant artifacts. An example showing these types of artifacts is
presented in [1]. Thus, we restrict ourselves here to unsplit discretizations.

The first unsplit three-dimensional second-order Godunov method, based on lin-
ear reconstruction, was presented by Saltzman [30], which was a generalization of the
two-dimensional scheme developed by Colella [10]. Colella [10] motivated the develop-
ment of the unsplit Godunov algorithm by introduction of the corner transport upwind
(CTU) method. The CTU method is a first-order upwind advection scheme that in-
corporates diagonal coupling based on a piecewise-constant approximation and the
geometry of characteristics for constant coefficient advection. However, the geomet-
ric interpretation was abandoned in the extension to general systems of conservation
laws. Miller and Colella [26] developed a three-dimensional unsplit scheme based on
the piecewise parabolic method (PPM) of Colella and Woodward [12]. This approach
uses the same formalism as the piecewise linear algorithms but constructs a parabolic
rather than a linear profile in each coordinate direction. Recent work by Colella and
collaborators has investigated the use of less-restrictive limiters for PPM. Colella and
Sekora [11] developed a new PPM limiter that preserves accuracy at smooth extrema
but suffers from sensitivity to roundoff error; more recently McCorquodale and Colella
[25] introduced an improvement to that limiter which is less sensitive to roundoff error.

LeVeque [17, 18, 19] introduced higher-order advection schemes based on geomet-
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ric ideas derived from a wave propagation perspective; these are now publicly avail-
able in the CLAWPACK package. Billett and Toro [8] present a three-dimensional
weighted average flux (WAF) method based on similar geometric ideas. These ap-
proaches, as well as the two-dimensional Mot-ICE-P1 scheme of Noelle [27], share a
number of features with the scheme of Bell, Dawson and Shubin [5] (BDS) that will
be our starting point. Lukáčová-Medvid’ová et al. [21, 22, 23] develop finite volume
evolution Galerkin methods (FVEG) that use geometric ideas based on bicharacter-
istics to develop numerical algorithms for non-diagonalizable systems. Smolarkiewicz
and collaborators developed multidimensional advection schemes for geophysical flows
based on flux-corrected transport ideas; see [33, 32] and the references cited therein.
Another class of schemes is the ADER-type schemes developed by Toro and collab-
orators; see, for example, Toro and Titarev [34]. These schemes are somewhat more
algebraic in their construction, using a Cauchy-Kowalewski procedure and Taylor se-
ries expansion to evaluate approximations at quadrature nodes on space-time faces
of cells. We note that the higher-order ADER schemes are not directly applicable in
our context because they require additional information about the velocity field that
is not available in our context. Another class of schemes that has become popular
for a wide range of problems is WENO-type schemes. The reader is referred to a
recent survey article by Shu [31] for a general discussion of these types of methods.
Of particular interest for multidimensional advection are unsplit, multidimensional
versions of WENO such as the two-dimensional semi-discrete algorithm of Kurganov
and Petrova [16] and the generalization to three dimensions by Balbás and Qian [3].
A final category of schemes is discontinuous Galerkin finite element methods. There
have been recent special issues of journals focused on discontinuous Galerkin; see
Dawson [13] and Cockburn and Shu [9]. Unlike the finite volume schemes discussed
above, discontinuous Galerkin methods advance an entire polynomial representation
in time. Although all of the above literature is applicable to linear advection, most
of these methods are designed for more general conservation laws. One approach to
solving (1.1) is simply to adapt a method for general systems to the special case con-
sidered here. However, we wish to exploit the special structure of the linear advection
problem to design a finite volume method that best meets the targets of accuracy and
shape preservation without overshoot or undershoot and fits the existing constraints in
terms of specification of the velocity field. In particular, the method presented here is
an extension of the two-dimensional BDS scheme to three dimensions. It exploits the
observation that the equation is (trivially) diagonalizable and bases the construction
of the fluxes on the detailed geometry of the characteristics. For constant coefficient
advection, the BDS scheme is numerically equivalent to fitting a profile within each
cell, analytically advecting the reconstructed solution and averaging the solution onto
the grid. We note that the method presented in this paper and the original BDS
algorithm are fully explicit in time, and do not require a Runge-Kutta procedure. As
noted in [5], the method is easily extendable to scalar conservation laws of the form

st + [uf(s)]x + [vg(s)]y + [wh(s)]z = q(s). (1.2)

In this paper, for ease of exposition, we restrict our developments to linear advection,
i.e., f(s) = g(s) = h(s) = s, q(s) = 0. However, the method does not generalize to
general systems of conservation laws.

This original BDS algorithm constructs a limited bilinear profile within each cell.
There are two issues in the extending this approach to three dimensions. First, we
need to construct a limited trilinear profile within each cell. Second, we need to
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specify the detailed characteristic domain of dependence of each face to assemble the
different contributions to the flux. These contributions are expressed as transverse
corrections to the flux normal to the surface, similar to the construction in the unsplit
Godunov schemes discussed above.

In section 2, we review the developments from the original two-dimensional BDS
algorithm. In section 3, we present the three-dimensional algorithm. In section 4,
we present numerical results comparing the three-dimensional BDS method to un-
split PLM and PPM schemes as well as the CLAWPACK wave propagation algo-
rithm. These comparisons examine convergence rates, shape preservation and over-
shoot/undershoot of the methods for both spatially constant and spatially variable
divergence-free velocities. We also illustrate the behavior of the method on advection
of a tracer in an incompressible flow being evolved using a projection method.

2. Review of Two-Dimensional Scheme. Here we give a short summary of
the original two-dimensional BDS method [5] to provide the reader with a basic un-
derstanding of the idea of the BDS scheme and to facilitate the understanding of the
extension to three dimensions. An alternative summary of the original BDS method
is given in [24]. We use a rectilinear grid with constant grid spacings ∆x and ∆y and
a finite volume representation in which snij denotes the average value of s over the cell
with index (ij) at time tn. The face between cells with indices (ij) and (i + 1, j) is
denoted (i+ 1/2, j). Corners are denoted in a similar way, e.g., (i+ 1/2, j+ 1/2). At each
face, the normal velocity (e.g., ui+1/2,j) is known and assumed to be constant over the
time step. We advance the solution in time using a three-step procedure:

• Step I: Construct a limited piecewise bilinear representation of the solution
in each grid cell of the form:

sij(x, y) = sij + sx,ij · (x−xi) + sy,ij · (y−yj) + sxy,ij · (x−xi)(y−yj), (2.1)

where (xi, yj) are the physical coordinates of cell center (ij) and sx,ij , sy,ij ,
and sxy,ij are approximations for partial derivatives of s in cell (ij).

• Step II: Construct edge states, si+1/2,j , etc., by integrating the piecewise
bilinear profiles over the space-time region determined by the characteristic
domain of dependence of the face.

• Step III: Advance the solution in time using the conservative update equa-
tion:

sn+1
ij = snij −

∆t

∆x
(ui+1/2,jsi+1/2,j − ui−1/2,jsi−1/2,j)

− ∆t

∆y
(vi,j+1/2si,j+1/2 − vi,j−1/2si,j−1/2). (2.2)

To construct the piecewise bilinear representation in Step I, we first compute val-
ues of s at each cell corner using high-order (bicubic) polynomial interpolation. These
corner values are used to compute the slopes sx,ij , sy,ij , and sxy,ij . In order to guaran-
tee a maximum principle (for constant coefficient linear advection) the corner values
may need to be adjusted prior to the calculation of the slopes to prohibit the creation
of new extrema. The extension of Step I to three dimensions is straightforward and
is explained in full detail in section 3.1.
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Step II is the heart of the BDS scheme and, even in two dimensions, is con-
siderably more complicated than Steps I and III. We use characteristic analysis to
determine the characteristic domain of dependence of each face. Since the velocity
field on edges is known, we can use the piecewise bilinear representation at time tn to
determine the “average” value of s that passes through a given face over a time step.
Hereby, we represent the edge states si+1/2,j , etc., in terms of integrals over space of
time tn data which are evaluated exactly (for our bilinear profile) using quadrature
formulae. Reviewing Step II of the two-dimensional method in detail is very helpful
for the understanding of the three-dimensional description of Step II given in section
3.2. We note that in the derivation of the two-dimensional method, time is used as a
third coordinate direction in the included figures to graphically determine the charac-
teristic domain of dependence of a face. This is not possible for the three-dimensional
method.

3. Three-Dimensional Scheme. We use the same notation as in the two-
dimensional case, with k representing the index for the z-direction. As before, we
advance the solution in time using an analogous three-step procedure:

• Step I: Construct a limited piecewise trilinear representation of the solution
in each grid cell of the form:

sijk(x, y, z) = sijk + sx,ijk · (x− xi) + sy,ijk · (y − yj) + sz,ijk · (z − zk)

+sxy,ijk · (x− xi)(y − yj) + sxz,ijk · (x− xi)(z − zk)

+syz,ijk · (y − yj)(z − zk) + sxyz,ijk · (x− xi)(y − yj)(z − zk). (3.1)

This procedure is described in section 3.1.

• Step II: Construct edge states, si+1/2,j,k, etc., by integrating the limited
piecewise trilinear profiles over the space-time region determined by the char-
acteristic domain of dependence of the face. This procedure is described in
section 3.2.

• Step III: Advance the solution in time using the conservative update equa-
tion:

sn+1
ijk = snijk−

∆t

∆x
(ui+1/2,j,ksi+1/2,j,k − ui−1/2,j,ksi−1/2,j,k)

−∆t

∆y
(vi,j+1/2,ksi,j+1/2,k − vi,j−1/2,ksi,j−1/2,k)

−∆t

∆z
(wi,j,k+1/2si,j,k+1/2 − wi,j,k−1/2si,j,k−1/2). (3.2)

3.1. Profile Reconstruction. We now describe the construction of a limited
piecewise trilinear representation of the solution in each grid cell of the form given in
(3.1). Following [5], for each cell we begin by computing point values at each corner
using nearby cell-average values. We limit these values to prevent new extrema and
then use difference formulae to compute the required derivatives.

To begin, for each corner, we find the tricubic polynomial whose cell averages
coincide with cell averages for the 64 cells (i.e., the 43 block of cells) surrounding
the corner. The value of the tricubic polynomial at the corner point gives an initial
estimate for the value at that corner. The tricubic interpolation is a straightforward



6 Nonaka et al.

extension of the bicubic stencil given in section 3 of [5], which is equivalent to a
multidimensional tensor product of Woodward and Colella’s formula [12]. The full
stencil has 64 points, so for brevity we only list the coefficients from one octant, noting
that the contribution from the remaining octants is symmetric:

si+1/2,j+1/2,k+1/2 =
343

1728
si+1,j+1,k+1 −

49

1728
(si+2,j+1,k+1 + si+1,j+2,k+1 + si+1,j+1,k+2)

+
7

1728
(si+2,j+2,k+1 + si+2,j+1,k+2 + si+1,j+2,k+2)− 1

1728
si+2,j+2,k+2 + · · · . (3.3)

For each cell, we consider the eight associated corner values. We will use a limited
version of these corner values to construct our trilinear approximation. We begin by
defining eight temporary corner values, e.g.,

s+++
ijk = si+1/2,j+1/2,k+1/2, s−++

ijk = si−1/2,j+1/2,k+1/2, etc. (3.4)

Then, we offset each of these temporary values by the same constant, so that the
average of the temporary values is equal to the cell average, sijk. Next, we modify the
temporary corner values using a heuristic procedure that is a direct three-dimensional
extension of the procedure in [5]. This procedure attempts to satisfy the following
two constraints:

• Constraint 1: The average of the eight temporary corner values equals the
cell-average value.

• Constraint 2: Each temporary corner value is not an extremum relative to
its neighboring eight cell-average values, e.g.,

αi+1/2,j+1/2,k+1/2 ≤ s
+++
ijk ≤ βi+1/2,j+1/2,k+1/2, (3.5)

αi+1/2,j+1/2,k+1/2 = min(si+i′,j+j′,k+k′),

βi+1/2,j+1/2,k+1/2 = max(si+i′,j+j′,k+k′), i′ = 0, 1; j′ = 0, 1; k′ = 0, 1.

(3.6)

We begin our heuristic procedure by enforcing Constraint 2 for each of the eight
temporary corner values by setting, e.g.,

s+++
ijk = max

[
min

(
s+++
ijk , βi+1/2,j+1/2,k+1/2

)
, αi+1/2,j+1/2,k+1/2

]
. (3.7)

Then, we iterate over the following steps in order to modify the temporary values so
that we enforce Constraint 1 without violating Constraint 2:

• Step 1: Compute the sum of the differences between the temporary values
and the cell-average value:

δ =

(∑
±

∑
±

∑
±
s±±±ijk

)
− 8sijk. (3.8)

Assume δ > 0 (if δ < 0 the algorithm is analogous, and if δ = 0, we have
“converged” and steps 2-4 are unnecessary).

• Step 2: Note which temporary corner values are larger than sijk by more
than ε = 10−10. Define an integer n as the number of corner values that meet
this criterion.
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• Step 3: Looping over each of the temporary corner values that is larger than
sijk by more than ε = 10−10, do the following (using corner s+++

ijk as an
example):

– Define γ = min
[
(δ/n), s+++

ijk − αi+1/2,j+1/2,k+1/2

]
.

– Set s+++
ijk = s+++

ijk − γ.
– Set n = n− 1.
– Set δ = δ − γ.

• Step 4: Return to Step 1.

After at most six iterations, we compute the final slopes used for our trilinear poly-
nomial using

sx,ijk =
(s+++

ijk + s++−
ijk + s+−+

ijk + s+−−
ijk )− (s−++

ijk + s−+−
ijk + s−−+

ijk + s−−−ijk )

4∆x
,

(3.9)

sxy,ijk =
(s+++

ijk + s++−
ijk + s−−+

ijk + s−−−ijk )− (s−++
ijk + s−+−

ijk + s+−+
ijk + s+−−

ijk )

2∆x∆y
,

(3.10)

sxyz,ijk =
(s+++

ijk + s+−−
ijk + s−+−

ijk + s−−+
ijk )− (s−++

ijk + s+−+
ijk + s++−

ijk + s−−−ijk )

∆x∆y∆z
,

(3.11)

and analogous formulae for sy, sz, sxz, and syz. We have now computed the limited
trilinear polynomial representation for each cell. It was noted in [5] that the two-
dimensional analog of this heuristic procedure led to results comparable to solving
the following minimization problem for each cell in every time step: find the bilinear
function that is closest to the bilinear function defined by the original interpolation
in L2 subject to Constraint 1 and Constraint 2. We have not observed any break
down of this heuristic procedure in our simulations.

3.2. Construction of Edge States. We now describe the construction of the
edge states that will be used in the conservative update equation (3.2). We restrict
our development to the computation of si+1/2,j,k; other faces are treated analogously.
Here we assume that ui+1/2,j,k > 0, noting that the case where ui+1/2,j,k < 0 is treated
analogously. Figure 3.1 shows cell R with index (ijk) and its eight surrounding
neighbors with an offset in the y and/or z-directions. The red cells (T, V,X, and Z)
are offset from cell R by ±1 in either the y or z-direction and the green cells (S,U,W ,
and Y ) are offset from cell R by ±1 in the y-direction and ±1 in the z-direction.
Since ui+1/2,j,k > 0, we solve for si+1/2,j,k using piecewise trilinear representations of
s from cells on the upwind side of face (i + 1/2, j, k), i.e., we use some subset of cells
R,S, T, U, V,W,X, Y , and Z.

It is important to note that Figures 1 and 2 in [5] are drawn in three dimen-
sions, with two dimensions representing the x and y spatial coordinates and the third
dimension representing time. For the figures in this paper, we must draw all three
spatial dimensions and are unable to graphically depict time. Many of the surfaces
and volumes described in this paper shrink over the time step, and thus, we choose
to only draw surfaces and volumes depicted at tn. The analogous figures from the
two-dimensional method would exclude the third axis and only show surfaces in the
x-y plane.
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Fig. 3.1. (Left) Cell R has index (ijk). Box ABCDEFGH is the characteristic domain of
dependence in x of face ABCD at tn since ui+1/2,j,k

> 0. (Right) Piecewise trilinear representations

of s within cell R, red cells (T, V,X, and Z), and green cells (S,U,W , and Y ) will be used to construct
si+1/2,j,k

.

We begin by linearizing (1.1) about cell R and expanding the derivative with
respect to x to obtain:

st + ui+1/2,j,ksx + (vs)y + (ws)z + sux,ijk = 0. (3.12)

As noted in [5], we have not expanded derivatives with respect to y or z. These terms
need to be upwinded to correctly capture the three-dimensional characteristic domain
of dependence. Also, each y and z face will be treated independently since in general
the velocity field varies in space.

Referring to the left of Figure 3.1, the characteristic domain of dependence in x of
face ABCD over the time interval t ∈ [tn, tn+1] is given by a box with configuration
ABCDEFGH at tn that shrinks over the time step. In particular, points E,F,G,
and H move in the positive x-direction with speed ui+1/2,j,k such that segments AE,
BF , CG, and DH have length |ui+1/2,j,k|∆t at tn and zero length at tn+1. The
intermediate-time lengths can be found by linearly interpolating between the lengths
at tn and tn+1. We denote this space-time region as Dx. For the rest of this paper, we
will use a special notation in which an overbar for a given point is used as a reminder
that the point changes location over time. If the overbar superscript is omitted, we
are specifically referring to the location of the point at tn.
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We form an expression for si+1/2,j,k by integrating (3.12) over Dx:∫ tn+1

tn

∫ ∫ ∫
ABCDEFGH

[
st + ui+1/2,j,ksx + (vs)y + (ws)z + sux,ijk

]
dx dy dz dt = 0.

(3.13)
Integrating by parts, noting that ui+1/2,j,k is constant over the time step and that
the integrals on the time varying surfaces vanish because they are characteristic, this
simplifies to:

0 = −
∫ ∫ ∫

ABCDEFGH

s dx dy dz

∣∣∣∣
tn

+ ui+1/2,j,ksi+1/2,j,k∆y∆z∆t

+

∫ tn+1

tn

∫ ∫
CDGH

vs dx dz dt−
∫ tn+1

tn

∫ ∫
ABEF

vs dx dz dt

+

∫ tn+1

tn

∫ ∫
BCFG

ws dx dy dt−
∫ tn+1

tn

∫ ∫
ADEH

ws dx dy dt

+

∫ tn+1

tn

∫ ∫ ∫
ABCDEFGH

sux,ijk dx dy dz dt. (3.14)

The integrals containing vs (and ws) represent transverse fluxes, each of which corre-
sponds to one of two possible cases, depending on the sign of vi,j±1/2,k (and wi,j,k±1/2).

As an example, consider the integral over CDGH. In the first case (if vi,j+1/2,k > 0),
this integral eliminates the effects of characteristics that originate from boxABCDEFGH
at tn but pass through face CDGH, rather than face ABCD, during the time step.
In the second case (if vi,j+1/2,k < 0), this integral accounts for the effects of s that
do not originate from box ABCDEFGH at tn but do pass through face ABCD
during the time step (such characteristics originate from either box S, T , or U). In
the latter case, these external characteristics originate from red cell T from Figure
3.1. Note that all characteristics traced backward in time from face ABCD at some
t ∈ [tn, tn+1] intersect either box ABCDEFGH at tn or one of the four faces ABEF ,
BCFG, ADEH, or CDGH, at some t ∈ [tn, tn+1]. Furthermore, any characteris-
tic traced forward in time from box ABCDEFGH at tn intersects one of the faces
ABCD, ABEF , BCFG, ADEH, or CDGH, at some t ∈ [tn, tn+1].

The first term on the right-hand-side of (3.14) is evaluated using the midpoint
quadrature rule,∫ ∫ ∫

ABCDEFGH

s dx dy dz

∣∣∣∣
tn
≡ sM · (ui+1/2,j,k∆t)∆y∆z, (3.15)

where sM is the average value of s over box ABCDEFGH at tn. To compute sM ,
we evaluate the trilinear function within cell R at the centroid of box ABCDEFGH.
Since all bounding faces are aligned with the coordinate axes, this formula is exact for
a trilinear polynomial. As in [5], the spatial part of the integral in the last term on the
right-hand-side of (3.14) is also evaluated using sM with an explicit Euler treatment
of the temporal integration. We now rewrite (3.14) to obtain the normal predictor
equation:

si+1/2,j,k = sM −
∆t

2∆y

(
Γy+ − Γy−)− ∆t

2∆z

(
Γz+ − Γz−)− ∆t

2
sMux,ijk. (3.16)

Here, Γy+ and Γy− (Γz+ and Γz−) are the transverse flux corrections, which represent
the average values of the flux vs (ws) over faces CDGH and ABEF (BCGF and
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Fig. 3.2. (Left) Volume CDGHIJ is the characteristic domain of dependence in x and y of
face CDGH at tn for the case when vi,j+1/2,k

> 0. (Top-Right) Volume CGIL is the characteristic

domain of dependence of face CGI in all spatial dimensions at tn for the case when wi,j+1,k+1/2
> 0.

(Bottom-Right) Volume CGIM is the characteristic domain of dependence of face CGI in all spatial
dimensions at tn for the case when wi,j+1,k+1/2

< 0. The red volume outline indicates that this region
lies in red cell Z from Figure 3.1.

ADEH) over t ∈ [tn, tn+1]. The factors of ∆t/2 in (3.16) come from the fact that we
are evaluating the last five integrals on the right-hand side of (3.14) over space-time
regions that are shrinking with respect to x in time. Thus, the space-time integral
of these characteristic regions is equal to the corresponding area (or volume) at tn

multiplied by ∆t/2. We compute spatial derivatives of velocity using the known face
velocities, e.g., ux,ijk = (ui+1/2,j,k − ui−1/2,j,k)/∆x, which follows from the standard
six-point divergence stencil for face-centered velocities (for many applications of this
type of discretization methodology, this definition of divergence is implicit in the
discretization of the elliptic partial differential equation used to compute the velocity
field).

To complete the procedure we must compute Γy+/Γy− (and Γz+/Γz−) by evaluat-
ing the integrals of vs (and ws) over the faces CDGH/ABEF (and BCGF/ADEH)
over t ∈ [tn, tn+1]. We restrict the development to the integral over CDGH to com-
pute Γy+; the others are computed in an analogous way. The integrand for this term
represents the flux in the y-direction. For this reason we estimate an average value of
s on face CDGH using linearization from the upwind side of face (i, j + 1/2, k), and
then compute the flux.

To compute Γy+, we first consider the case where vi,j+1/2,k > 0. We linearize (1.1)
about cell R and expand the derivatives with respect to x and y to obtain:

st + ui+1/2,j,ksx + vi,j+1/2,ksy + (ws)z + sux,ijk + svy,ijk = 0. (3.17)

We have not expanded the derivative with respect to z; as before, these terms need
to be upwinded independently at each edge to capture the characteristic domain of
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dependence accurately. Referring to the left of Figure 3.2, the characteristic domain
of dependence in x and y of face CDGH over t ∈ [tn, tn+1] is given by the space-time
region bounded by volume CDGHIJ over t ∈ [tn, tn+1]. In particular,

• CG and DH have length |ui+1/2,j,k|∆t at tn, length zero at tn+1, with the
length changing as a linear function of time.

• GI and HJ have length |vi,j+1/2,k|∆t at tn, length zero at tn+1, with the
length changing as a linear function of time.

Consequently, triangular faces CGI and DHJ remain geometrically similar to trian-
gular faces CGI and DHJ . We denote this space-time region as Dxy. We compute
Γy+ by first forming an expression for sCDGH by integrating (3.17) over Dxy:∫ tn+1

tn

∫ ∫ ∫
CDGHIJ

[
st + ui+1/2,j,ksx + vi,j+1/2,ksy

+(ws)z + sux,ijk + svy,ijk] dx dy dz dt = 0. (3.18)

Integrating by parts, noting that vi,j+1/2,k is constant over the time step and that the
integrals along time-varying surfaces vanish because the surfaces are characteristic,
(3.18) simplifies to:

0 = −
∫ ∫ ∫

CDGHIJ

s dx dy dz

∣∣∣∣
tn

+ vi,j+1/2,ksCDGH

ui+1/2,j,k∆t

2
∆z∆t

+

∫ tn+1

tn

∫ ∫
CGI

ws dx dy dt−
∫ tn+1

tn

∫ ∫
DHJ

ws dx dy dt

+

∫ tn+1

tn

∫ ∫ ∫
CDGHIJ

(sux,ijk + svy,ijk) dx dy dz dt. (3.19)

The integrals containing ws represent corner fluxes, each of which can correspond
to one of two possible cases, depending on the sign of wi,j,k±1/2. In the first case
(wi,j,k+1/2 > 0), the integral eliminates the effects of characteristics that originate

from volume CDGHIJ at tn but do not pass through face CDGH during the time
step. See the upper-right of Figure 3.2 for a depiction of such a spatial region at tn. In
the second case (wi,j,k+1/2 < 0), the integral accounts for the effects of characteristics

that do not originate from volume CDGHIJ at tn but do pass through face CDGH
during the time step. See the lower-right of Figure 3.2 for a depiction of such a spatial
region at tn. In the latter case, these external characteristics originate from red cell
Z (i, j, k + 1) in Figure 3.1. All characteristics traced backward in time from face
CDGH for t ∈ [tn, tn+1] intersect either volume CDGHIJ at tn or one of the two
triangles, CGI or DHJ at some t ∈ [tn, tn+1]. Furthermore, any characteristic traced
forward in time from volume CDGHIJ at tn intersects either face CDGH or one of
the triangles CGI or DHJ at some t ∈ [tn, tn+1].

The first term on the right-hand side of (3.19) can be simplified by analytically
integrating the trilinear approximation for s over CDGHIJ at tn:∫ ∫ ∫

CDGHIJ

s dx dy dz

∣∣∣∣
tn

= sM2

(ui+1/2,j,k∆t)(vi,j+1/2,k∆t)

2
∆z, (3.20)

where sM2 is the average value of s over CDGHIJ . Since we are dealing with trilinear
polynomials and faces CGI and DHJ are normal to the ±z-direction, sM2 is equal
to the average of the trilinear function evaluations at the centroids of faces CDGH,
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GHIJ , and CDIJ in cell R. We now rewrite (3.19) to obtain the transverse predictor
equation:

sCDGH = sM2 −
∆t

3∆z

(
Γy+,z+ − Γy+,z−)− ∆t

3
(sM2ux,ijk + sM2vy,ijk) , (3.21)

where Γy+,z+ (Γy+,z−) are the corner flux corrections that represent the average value
of the flux ws over faces CGI (DHJ) over t ∈ [tn, tn+1]. The factors of ∆t/3 in (3.21)
come from the fact that we are evaluating the last three integrals on the right-hand
side of (3.19) over space-time regions that are shrinking with respect to x and y. In
other words, the space-time integral of these characteristic regions is equal to the
corresponding area (or volume) at tn multiplied by ∆t/3. After computing sCDGH ,
we set Γy+ = vi,j+1/2,ksCDGH . We will now complete the description of Γy+ when
vi,j+1/2,k > 0 by describing how to compute the corner flux corrections. Then we will
describe the computation of Γy+ when vi,j+1/2,k < 0.

To compute the corner fluxes, we restrict the development to the integral over
CGI to compute Γy+,z+; Γy+,z− is computed in an analogous way. The integrand for
this term represents the flux in the z-direction. For this reason we estimate an average
value of s on face CGI using linearization from the upwind side of face (i, j, k + 1/2)
and then compute the flux.

To compute Γy+,z+, first consider the case where wi,j,k+1/2 > 0. We linearize (1.1)
about cell R and expand the derivatives with respect to all three directions to obtain:

st + ui+1/2,j,ksx + vi,j+1/2,ksy + wi,j,k+1/2sz + sux,ijk + svy,ijk + swz,ijk = 0. (3.22)

Referring to the upper-right of Figure 3.2, the characteristic domain of dependence
in all dimensions of face CGI over t ∈ [tn, tn+1] is given by the space-time region
bounded by volume CGIL over t ∈ [tn, tn+1]. This volume changes shape over time
such that:

• CG and GI change as described before.
• IL has length |wi,j,k+1/2∆t| at tn, length zero at tn+1, with the length changing

as a linear function of time.
In other words, volume CGIL remains geometrically similar to CGIL. We denote this
space-time region as Dxyz. All characteristics traced backward in time from face CGI
for t ∈ [tn, tn+1] intersect volume CGIL at tn. Furthermore, any characteristic traced
forward in time from volume CGIL at tn intersects face CGI at some t ∈ [tn, tn+1].
We compute Γy+,z+ by first forming an expression for sCGI by integrating (3.22) over
Dxyz:∫ tn+1

tn

∫ ∫ ∫
CGIL

[
st + ui+1/2,j,ksx + vi,j+1/2,ksy + wi,j,k+1/2sz

+sux,ijk + svy,ijk + swz,ijk] dx dy dz dt = 0. (3.23)

Integrating (3.23) by parts and simplification lead to the corner predictor equation:

sCGI = sM3 −
∆t

4
(ux,ijksM3 + vy,ijksM3 + wz,ijksM3) , (3.24)

where sM3 is the average value of s over volume CGIL. We evaluate sM3 using the
five-point Gaussian quadrature rule given in [15] which is accurate for cubic polyno-
mials over three-dimensional tetrahedra using the trilinear polynomial representation
in cell R. The factor of ∆t/4 in (3.24) comes from the fact that we are evaluating the
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last three integrals on the right-hand side of (3.23) over a space-time region that is
shrinking with respect to x, y, and z. In other words, the space-time integral of this
characteristic region is equal to the volume at tn multiplied by ∆t/4. Finally, we set
Γy+,z+ = wi,j,k+1/2sCGI .

The other case to consider when computing Γy+,z+ is when wi,j,k+1/2 < 0. The
resulting developments are similar to the case where wi,j,k+1/2 > 0. In particular, we
now linearize (1.1) about red cell Z from Figure 3.1 rather than cell R to compute
sCGI . The resulting volume CGIM which we integrate over is shown in the lower-
right of Figure 3.2. However, the shape of volume CGIM is determined by face
velocities that do not lie on one of the six faces of cell R. In this case:

• NO has length |ui+1/2,j,k+1|∆t, whereas CG has length |ui+1/2,j,k|∆t.
• MN has length |vi,j+1/2,k+1|∆t, whereas GI has length |vi,j+1/2,k|∆t.
• CO has length |wi,j,k+1/2|∆t, which is analogous to IL.

Also, G, I, M , N , and O move such that volume CGIM remains geometrically similar
to volume CGIM . Using these guidelines, it is possible for point M to lie outside of
red cell Z from Figure 3.1. This can happen if ui+1/2,j,k+1 < 0 or vi,j+1/2,k+1 < 0. In
this case, we simply construct our tetrahedral regions as if the velocity component(s)
that violates this condition was equal to zero. In other words, we do not allow the
characteristic region to extend across multiple cells. We enforce this idea for the
remainder of the algorithm. Then, we set Γy+,z+ = wi,j,k+1/2sCGI . The description of
Γy+ when vi,j+1/2,k > 0 is now complete.

To consider the computation of Γy+ when vi,j+1/2,k < 0, refer to the left of Figure
3.3. The derivation follows as before, noting that we linearize (1.1) about red cell T
from Figure 3.1 to compute sCDGH and that:

• CG and DH have length |ui+1/2,j,k|∆t.
• IK has length |ui+1/2,j+1,k|∆t.
• CK has length |vi,j+1/2,k|∆t.

To compute Γy+,z+ when wi,j+1,k+1/2 > 0, refer to the upper-right of Figure 3.3.
We linearize (1.1) about red cell T from Figure 3.1, noting that IL has length
|wi,j+1,k+1/2|∆t. To compute Γy+,z+ when wi,j+1,k+1/2 < 0, refer to the lower-right
of Figure 3.3. We linearize (1.1) about green cell S from Figure 3.1, noting that:

• NO has length |ui+1/2,j+1,k+1|∆t.
• MN has length |vi,j+1/2,k+1|∆t.
• CO has length |wi,j+1,k+1/2|∆t.

This completes the description of the construction of edge states.

4. Results. In this section, we perform a series of tests to examine the overshoot,
shape tracking, error, and convergence rates for our algorithm. All simulations are
performed on a unit cube with x, y, z ∈ [0, 1], periodic boundary conditions, a CFL
number of 0.9, and a final time of t = 1. We perform each simulation using a domain
with 643, 1283, and 2563 cells. We compare results for our new scheme, denoted as
“BDS”, to Saltzman’s unsplit piecewise-linear method [30], referred to as “PLM”,
and to the unsplit PPM method of Miller and Colella [26]. In the PLM method,
the piecewise linear representation is computed using fourth-order limited slopes in
each coordinate direction; PPM uses a limited quadratic profile in each coordinate
direction. We consider two limiters for PPM: a recent version designed to avoid
limiting at smooth extrema, referred to as “PPM2”, [11, 25], and the original PPM
limiter (labeled as “PPM1”) [12]. We also compare to the three-dimensional advection
algorithm available in the CLAWPACK package [17, 18, 19], referred to as “CLAW”,
using full corner coupling and van Leer limiting [20]. We also present some results



14 Nonaka et al.

G C

I

DH

J

K

v i
,j+

1/
2,

k
 <

 0

CG

I K

L

wi,j+1,k+1/2  > 0

y

x

z

I

G wi,j+1,k+1/2  < 0
C

M

N O

Fig. 3.3. (Left) Volume CDGHIJ is the characteristic domain of dependence in x and y of
face CDGH at tn for the case when vi,j+1/2,k

< 0. The red volume outline indicates that this

region lies in red cell T from Figure 3.1. (Top-Right) Volume CGIL is the characteristic domain
of dependence of face CGI in all spatial dimensions at tn for the case when wi,j,k+1/2

> 0. The red

volume outline indicates that this region lies in red cell T from Figure 3.1. (Bottom-Right) Volume
CGIM is the characteristic domain of dependence of face CGI in all spatial dimensions at tn for
the case when wi,j,k+1/2

< 0. The green volume outline indicates that this region lies in green cell S
from Figure 3.1.

without limiters. For the BDS algorithm, turning off limiters is achieved by using the
unlimited corner values as defined in (3.3) and (3.4) to compute slopes for the trilinear
polynomial representation using (3.9)-(3.11). For the PLM algorithm, turning off
limiters is achieved by using an unlimited fourth order slope formula. For the PPM
algorithm (PPM1 and PPM2 reduce to the same algorithm in the absence of limiters),
turning off limiters is achieved by using the one-dimensional quadratic profile in each
coordinate direction in each cell with no limiting. For the CLAW algorithm, we simply
disable the van Leer limiters. In our tables, we define the L1 and L2 error as

L1 =
1

N

∑
ijk

|sijk − sexact
ijk |, L2 =

√
1

N

∑
ijk

|sijk − sexact
ijk |2. (4.1)

where N is the number of cells in the domain and sexact is the exact solution. We
define the convergence rate between adjacent resolutions as

pcoarser/finer = log2

(
Lcoarser

Lfiner

)
. (4.2)

4.1. Constant Velocity Advection. Our first test is for constant-velocity, off-
diagonal advection using u = (1.0, 0.5, 0.25). We advect a spherical step function with
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Table 4.1
Minimum and maximum scalar values for advection of a spherical step function at t = 1 with

u = (1, 0.5, 0.25). ∗The actual maximum for the 2563 BDS simulation is 1 − ε, where ε =7.95e-11.

Scheme 643 Min 643 Max 1283 Min 1283 Max 2563 Min 2563 Max

Exact 0.00e-00 1.00000 0.000e-00 1.00000 0.000e-00 1.00000
BDS -1.37e-11 0.99754 -3.11e-12 0.99999 -4.80e-11 1.00000∗

PPM2 -2.17e-01 1.32268 -2.58e-01 1.29997 -2.62e-01 1.25976
PPM1 -2.13e-01 1.26217 -2.52e-01 1.27265 -2.61e-01 1.25617
PLM -2.08e-01 1.24458 -2.59e-01 1.26629 -2.70e-01 1.24739

CLAW -1.53e-03 0.99826 -3.04e-03 1.00211 -3.99e-03 1.00410

an initial minimum of 0 and maximum of 1:

s0(x, y, z) =

{
1, r ≤ 0.1

0, r > 0.1
; r =

√
(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2. (4.3)

We also advect a Gaussian profile that has an initial analytical range of s0 ∈ [0, 1]:

s0(x, y, z) = e−300r2 , (4.4)

where r is given in (4.3).

4.1.1. Constant Velocity Advection: Step Function. In Table 4.1 we re-
port the minimum and maximum scalar values of the computed solutions for the
spherical step function at t = 1. CLAW shows a modest amount of over/undershoot
that becomes worse with resolution (with a maximum of 0.4% on a 2563 grid). The
PPM2, PPM1, and PLM algorithms show considerable overshoot that does not ap-
preciably improve with resolution. The PPM2 algorithm is the worst offender, with
overshoot/undershoot of 22%/32% in the coarsest simulation and 26%/26% in the
finest simulation. The BDS algorithm does a remarkable job of preserving the peak
value of the step function without any overshoot. At the coarsest resolution, the peak
value is 0.99754 and at the finest resolution, the peak value is 1− ε, where ε = 7.95e-
11. The undershoot in the BDS algorithm is O(10−11) and can be directly attributed
to roundoff error and the choice of ε in the slope limiting algorithm in section 3.1.

In Figure 4.1, we show contours of the BDS, CLAW, and PPM2 solutions at
2563 resolution. Figures 4.1(a)-4.1(c) show contours at 0.1, 0.5, and 0.9. We see
that the BDS contours are tighter than the CLAW and PPM2 contours, indicating
less smearing of the front. We also note some slight shape distortion in the PPM2
method. In Figure 4.1(d), we have added additional contours to the PPM2 solution
indicating regions where the method undershoots (in blue) and overshoots (in red).

In Table 4.2, we report the L1 error and convergence rates for the spherical step
function for each method. Due to the discontinuous initial data, all of the methods
show less than first-order convergence. The BDS solution has the lowest L1 error of all
the methods, such that the error has been reduced by 23% as compared to the CLAW
solution in the coarsest simulation and by 25% in the finest simulation. Compared
to the PPM2 solution, the BDS method has 35% less error in the coarsest simulation
and 48% less error in the finest simulation. Disabling the limiters does lead to a minor
increase in error for all the schemes (particularly for CLAW, where the error increases
by approximately a factor of two) but does not significantly change the convergence
rate of any of the methods. In summary, for this test we conclude:
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(a) BDS - Contours:
0.1, 0.5, 0.9

(b) CLAW - Contours:
0.1, 0.5, 0.9

(c) PPM2 - Contours:
0.1, 0.5, 0.9

(d) PPM2 - Contours:
(Blue) -0.15, -0.1, -0.05

(Red) 1.05, 1.1, 1.15

Fig. 4.1. Results for advection of a spherical step function with u = (1, 0.5, 0.25) at 2563

resolution. 4.1(a)-4.1(c): The gray contours lie at scalar values of 0.1, 0.5, and 0.9. 4.1(d): We
have added additional contours to the PPM2 solution. The blue contours show where the method
undershoots, corresponding to scalar values of -0.15, -0.1, and -0.05, and the red contours show
where the method overshoots, corresponding to scalar values of 1.05, 1.1, and 1.15.

Table 4.2
L1 error and convergence rates for advection of a spherical step function with u = (1, 0.5, 0.25).

Scheme 643 Error p64/128 1283 Error p128/256 2563 Error

BDS 1.26e-03 0.74 7.54e-04 0.70 4.63e-04
PPM2 1.94e-03 0.58 1.30e-03 0.55 8.86e-04
PPM1 1.92e-03 0.58 1.28e-03 0.56 8.67e-04
PLM 1.92e-03 0.57 1.29e-03 0.57 8.70e-04

CLAW 1.64e-03 0.72 9.93e-04 0.68 6.20e-04
BDS, no limiting 1.56e-03 0.69 9.64e-04 0.66 6.11e-04
PPM, no limiting 2.27e-03 0.61 1.49e-03 0.52 1.04e-03
PLM, no limiting 2.25e-03 0.57 1.52e-03 0.60 1.00e-03

CLAW, no limiting 3.07e-03 0.59 2.04e-03 0.56 1.38e-03

• BDS satisfies a maximum principle, whereas CLAW exhibits mild over/under-
shoot, and the PPM methods exhibit significant over/undershoot.

• BDS has the best shape preservation.
• All methods are less than first-order, with BDS having the lowest error, fol-

lowed by CLAW and then by the PPM methods.

4.1.2. Constant Velocity Advection: Gaussian. In Table 4.3, we report the
minimum and maximum scalar values of the computed solutions for the Gaussian pro-
file at t = 1. We note that the exact analytical maximum is 1.0, but due to numerical
quadrature the exact numerical maximum is slightly less than 1.0, as indicated in the
table. Even for smooth initial data in this test, the PPM2, PPM1, and PLM algo-
rithms do not satisfy a maximum principle. At the coarsest resolution, these methods
exhibit approximately 3% undershoot, which tends to zero with increasing resolution.
We also note that at the coarsest resolution, the CLAW method undershoots slightly.
By contrast, the undershoot in the BDS algorithm is O(10−10) at any resolution,
which again is due to roundoff error and the choice of ε in the slope limiting. We note
that the PPM2 algorithm preserves the peak better than the BDS method, and the
BDS method preserves the peak better than the CLAW method. It is not unexpected
that the PPM2 algorithm retains the peak value best since it is specifically designed
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Table 4.3
Minimum and maximum scalar values for advection of a Gaussian profile at t = 1 with u =

(1, 0.5, 0.25).

Scheme 643 Min 643 Max 1283 Min 1283 Max 2563 Min 2563 Max

Exact 0.00e-00 0.93000 0.00e-00 0.98190 0.00e-00 0.99544
BDS -2.47e-11 0.74179 -4.95e-11 0.91376 -1.10e-10 0.97265

PPM2 -3.19e-02 0.84358 -1.40e-04 0.97404 -6.34e-11 0.99497
PPM1 -3.73e-02 0.74702 -3.91e-04 0.91641 -4.95e-10 0.97272
PLM -3.01e-02 0.71146 -2.44e-04 0.89800 -6.07e-10 0.96421

CLAW -1.86e-06 0.61655 -6.51e-15 0.83346 -1.19e-20 0.93453

(a) Exact - 2563 (b) BDS - 2563 (c) CLAW - 2563 (d) PPM2 - 2563

(e) Exact - 643 (f) BDS - 643 (g) CLAW - 643 (h) PPM2 - 643

Fig. 4.2. Results for advection of a Gaussian profile with u = (1, 0.5, 0.25). The contours lie
at scalar values of 0.1 through 0.6. 4.2(a)-4.2(d): 2563 resolution. 4.2(e)-4.2(h): 643 resolution.

to avoid limiting at smooth extrema.

In Figure 4.2, we show contours of the exact, BDS, CLAW, and PPM2 solutions
at 2563 and 643 resolution. For the 2563 simulations, all methods do a good job at
preserving the shape of the Gaussian, with only a slight deformation seen in the CLAW
simulation. For the 643 simulations, the CLAW and PPM2 contours are clearly more
distorted than the BDS contours, and the smearing of the peak is very noticeable in
the CLAW method.

In Table 4.4, we report the L1 error and convergence rates for the Gaussian profile.
Each of the methods is second-order accurate and the BDS algorithm has the lowest
error of all of the methods. Specifically, the BDS algorithm reduces the L1 error by
49% (for the 643 case) and 71% (for the 2563 case) compared to CLAW. Also, the BDS
algorithm reduces the L1 error by 64% (for the 643 case) and 74% (for the 2563 case)
compared to PPM2. Although BDS does not do as well as PPM2 in preserving the
peak, the reduced distortion of BDS leads to an overall reduction in error. Table 4.4
also shows that the presence of limiters does little to affect the error or the convergence
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Table 4.4
L1 error and convergence rates for advection of a Gaussian profile with u = (1, 0.5, 0.25).

Scheme 643 Error p64/128 1283 Error p128/256 2563 Error

BDS 9.21e-05 2.35 1.81e-05 2.10 4.23e-06
PPM2 2.56e-04 1.97 6.55e-05 1.99 1.65e-05
PPM1 2.62e-04 1.90 7.00e-05 1.98 1.77e-05
PLM 2.70e-04 1.86 7.43e-05 1.96 1.91e-05

CLAW 1.80e-04 1.83 5.08e-05 1.81 1.44e-05
BDS, no limiting 8.46e-05 2.27 1.76e-05 2.07 4.18e-06
PPM, no limiting 2.57e-04 1.97 6.55e-05 1.99 1.65e-05
PLM, no limiting 2.67e-04 1.97 6.81e-05 1.99 1.72e-05

CLAW, no limiting 4.68e-04 1.94 1.22e-04 2.00 3.06e-05

Table 4.5
L2 error and convergence rates for advection of a Gaussian profile with u = (1, 0.5, 0.25).

Scheme 643 Error p64/128 1283 Error p128/256 2563 Error

BDS 1.82e-03 2.40 3.46e-04 2.22 7.43e-05
PPM2 3.40e-03 1.82 9.65e-04 1.97 2.47e-04
PPM1 3.58e-03 1.73 1.08e-03 1.92 2.86e-04
PLM 3.82e-03 1.67 1.20e-03 1.87 3.29e-04

CLAW 3.80e-03 1.66 1.20e-03 1.73 3.61e-04
BDS, no limiting 1.38e-03 2.23 2.94e-04 2.08 6.93e-05
PPM, no limiting 3.40e-03 1.82 9.65e-04 1.97 2.47e-04
PLM, no limiting 3.64e-03 1.81 1.04e-03 1.96 2.68e-04

CLAW, no limiting 6.07e-03 1.67 1.91e-03 1.95 4.96e-04

rates for any of the algorithms (with the exception being the CLAW algorithm, where
the error increases by approximately a factor of two). In Table 4.5, we report the L2

error and convergence rates for the Gaussian profile. We see very similar behavior as
in the L1 error case, where each of the methods is second-order accurate and the BDS
algorithm has the lowest error of all of the methods. Specifically, the BDS algorithm
reduces the L2 error by 52% (for the 643 case) and 79% (for the 2563 case) compared
to CLAW. Also, the BDS algorithm reduces the L2 error by 46% (for the 643 case)
and 70% (for the 2563 case) compared to PPM2. In summary, for this test case we
conclude:

• BDS satisfies a maximum principle, whereas the other methods show mild
undershoot at low resolution.

• The PPM methods preserve the peak value the best, followed by BDS and
then CLAW.

• BDS has the best shape preservation, particularly at low resolution.
• All methods are second-order, with BDS having the lowest error, followed by

either CLAW or the PPM methods (depending on the choice of norm).

4.2. Minimum and Maximum Values as a Function of Angle. Here we
examine the overshoot properties of the PPM2, CLAW, and BDS methods for a
spherical step function advected at a constant velocity at several different angles.
Specifically, we set u = 1 and vary v and w. Here we choose to compare against
PPM2 rather than PPM1 or PLM since PPM2 is considered to be more state of the
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Table 4.6
Minimum and maximum scalar values for advection of a spherical step function with a constant

velocity field at several different angles at t = 1 using a domain with 1283 cells. We use u = 1 and
(v, w) as given below. ∗The actual maxima is 1− ε, where ε < 5e-06, and thus there is no overshoot.

(v, w) PPM2 Min/Max CLAW Min/Max BDS Min/Max
(0.00,0.00) 0.00e-00 / 1.00143 0.00e-00 / 1.00000 -3.02e-12 / 1.00000∗

(0.25,0.00) -2.11e-01 / 1.18439 -1.21e-03 / 1.00055 -4.22e-12 / 1.00000∗

(0.25,0.25) -2.45e-01 / 1.24855 -3.92e-03 / 1.00396 -3.22e-12 / 1.00000∗

(0.50,0.00) -2.45e-01 / 1.22161 -5.35e-04 / 1.00003 -3.23e-12 / 0.99999
(0.50,0.25) -2.58e-01 / 1.29997 -3.04e-03 / 1.00211 -3.11e-12 / 0.99999
(0.50,0.50) -2.63e-01 / 1.34643 -2.13e-03 / 1.00064 -2.68e-12 / 0.99998
(0.75,0.00) -2.35e-01 / 1.19973 -9.28e-04 / 1.00024 -3.91e-12 / 1.00000∗

(0.75,0.25) -2.57e-01 / 1.26605 -3.64e-03 / 1.00326 -3.14e-12 / 0.99999
(0.75,0.50) -2.68e-01 / 1.31557 -2.67e-03 / 1.00136 -3.00e-12 / 0.99999
(0.75,0.75) -2.51e-01 / 1.28507 -3.22e-03 / 1.00235 -3.00e-12 / 0.99999
(1.00,0.00) -1.90e-01 / 1.11843 -1.18e-03 / 1.00073 -2.95e-12 / 1.00000∗

(1.00,0.25) -2.37e-01 / 1.22304 -3.46e-03 / 1.00386 -3.02e-12 / 1.00000∗

(1.00,0.50) -2.57e-01 / 1.26227 -2.65e-03 / 1.00205 -2.55e-12 / 0.99999
(1.00,0.75) -2.56e-01 / 1.24886 -3.14e-03 / 1.00290 -2.85e-12 / 1.00000∗

(1.00,1.00) -1.74e-01 / 1.15754 -3.03e-03 / 1.00383 -2.78e-12 / 1.00000∗

art. Table 4.6 shows the minimum and maximum scalar values at t = 1 for a domain
with 1283 cells. For any angle, the BDS method does not overshoot, retaining the peak
value within 2e-05, while the undershoot is O(10−12). PPM2 violates a maximum
principle for every case, and the undershoot is most severe for u = (1, 0.75, 0.50)
(27%) and the overshoot is the most severe for u = (1, 0.5, 0.5) (35%). PPM performs
reasonably well for the u = (1, 0, 0) case, with an overshoot of only 0.1%, which is
expected since this corresponds to a one-dimensional problem. CLAW performs very
well in the u = (1, 0, 0) case with no overshoot, but violates a maximum principle for
all other cases. The overshoot/undershoot is modest compared to PPM2, with the
most severe case occurring for u = (1, 0.25, 0.25) (0.4%).

4.3. Variable Velocity Advection. We advect the same step function and
Gaussian profiles from section 4.1, but now we use a velocity field that varies in space,
u = [1, 0.5 + 0.5 sin(2πx), 0.25 + 0.25 cos(2πx)]. Thus, we are no longer guaranteed
to satisfy a maximum principle. We use this test to demonstrate that, even for non-
constant velocity fields, the BDS method exhibits significantly less overshoot than the
other methods, has reduced error, and is second-order accurate for smooth data.

4.3.1. Variable Velocity Advection: Step Function. In Table 4.7 we report
the minimum and maximum scalar values of the exact and computed solutions for the
spherical step function at t = 1. Similar to the constant velocity case, PPM2, PPM1,
and PLM show considerable overshoot that does not improve with resolution. The
overshoot for the CLAW method is modest and becomes a bit worse with resolution
(up to 0.2% on a 2563 grid). The overshoot/undershoot for the PPM2 simulation
is 19%/22% in the coarsest simulation and 25%/21% in the finest simulation. The
undershoot for the BDS simulation is O(10−11) at all resolutions and the overshoot at
the finest resolution is O(10−11), which again is due to roundoff error and the choice
of ε in the slope limiting. The BDS algorithm still does a good job at retaining the
peak value, with a maximum of 0.99887 at the coarsest resolution.
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Table 4.7
Minimum and maximum scalar values for advection of a spherical step function at t = 1 with

u = [1, 0.5 + 0.5 sin(2πx), 0.25 + 0.25 cos(2πx)]. ∗The maximum for the 2563 BDS solution is 1 + ε,
where ε =3.99e-11.

Scheme 643 Min 643 Max 1283 Min 1283 Max 2563 Min 2563 Max

Exact 0.00e-00 1.00000 0.00e-00 1.00000 0.00e-00 1.00000
BDS -1.25e-11 0.99887 -2.00e-11 0.99999 -4.76e-11 1.00000∗

PPM2 -1.88e-01 1.22082 -2.27e-01 1.19627 -2.45e-01 1.20707
PPM1 -1.99e-01 1.19684 -2.32e-01 1.20626 -2.44e-01 1.21534
PLM -1.82e-01 1.19884 -2.23e-01 1.20309 -2.42e-01 1.20577

CLAW -1.40e-03 1.00001 -1.69e-03 1.00139 -1.83e-03 1.00177

Table 4.8
L1 error and convergence rates for advection of a spherical step function with u = [1, 0.5 +

0.5 sin(2πx), 0.25 + 0.25 cos(2πx)].

Scheme 643 Error p64/128 1283 Error p128/256 2563 Error

BDS 1.26e-03 0.74 7.52e-04 0.71 4.61e-04
PPM2 1.74e-03 0.56 1.18e-03 0.53 8.15e-04
PPM1 1.76e-03 0.55 1.20e-03 0.55 8.17e-04
PLM 1.80e-03 0.56 1.22e-03 0.55 8.36e-04

CLAW 1.57e-03 0.71 9.58e-04 0.67 6.01e-04
BDS, no limiting 1.53e-03 0.69 9.50e-04 0.66 6.00e-04
PPM, no limiting 1.98e-03 0.57 1.33e-03 0.56 9.05e-04
PLM, no limiting 2.11e-03 0.55 1.44e-03 0.53 9.94e-04

CLAW, no limiting 2.78e-03 0.56 1.89e-03 0.56 1.28e-03

In Table 4.8, we report the L1 error and convergence rates. As in the constant
velocity case, the convergence rate for each algorithm is less than first order. The
BDS error is 20% less than the CLAW error at the coarsest resolution, and 23% less
at the finest resolution. Also, the BDS error is 28% less than PPM2 at the coarsest
resolution and 43% less at the finest resolution. Again, disabling the limiters does not
significantly affect the error or convergence of the methods (with the exception being
CLAW). In summary, this test confirms the conclusions from the constant velocity
advection test case in section 4.1.1.

4.3.2. Variable Velocity Advection: Gaussian. In Table 4.9 we report the
minimum and maximum scalar values of the exact and computed solutions for the
Gaussian profile at t = 1. The undershoot in the BDS algorithm is in the range of
numerical roundoff. There is only minor undershoot in the CLAW algorithm at the
coarsest resolution. The undershoot for the remaining methods is 4% at the coarsest
resolution and tends to zero with increasing resolution. As in the constant velocity
case, we observe that the PPM2 solution preserves the peak value better than the
BDS algorithm, and the BDS algorithm preserves the peak better than the CLAW
algorithm.

In Table 4.10, we report the L1 error and convergence rates. Each algorithm is
second order accurate, but the error of the BDS method is lower than the error of the
other methods, with a 42% decrease as compared to CLAW at the coarsest resolution,
and 61% decrease at the finest resolution. Also, the BDS error is 60% less than PPM2
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Table 4.9
Minimum and maximum scalar values for advection of a Gaussian profile at t = 1 with u =

[1, 0.5 + 0.5 sin(2πx), 0.25 + 0.25 cos(2πx)].

Scheme 643 Min 643 Max 1283 Min 1283 Max 2563 Min 2563 Max

Exact 0.00e-00 0.93000 0.00e-00 0.98190 0.00e-00 0.99544
BDS -2.57e-11 0.74172 -5.79e-11 0.91194 -1.16e-10 0.97175

PPM2 -3.58e-02 0.84890 -5.35e-04 0.97406 -1.89e-09 0.99493
PPM1 -4.12e-02 0.77632 -7.45e-04 0.93978 -3.86e-08 0.98471
PLM -4.26e-02 0.74555 -1.36e-03 0.93019 -2.16e-09 0.98171

CLAW -3.24e-06 0.64455 -1.46e-16 0.84826 -2.01e-21 0.94080

Table 4.10
L1 error and convergence rates for advection of a Gaussian profile with u = [1, 0.5 +

0.5 sin(2πx), 0.25 + 0.25 cos(2πx)].

Scheme 643 Error p64/128 1283 Error p128/256 2563 Error

BDS 9.12e-05 2.31 1.84e-05 2.11 4.26e-06
PPM2 2.27e-04 1.88 6.18e-05 1.98 1.57e-05
PPM1 2.33e-04 1.89 6.30e-05 1.97 1.61e-05
PLM 2.54e-04 1.86 7.01e-05 1.95 1.82e-05

CLAW 1.57e-04 1.95 4.06e-05 1.91 1.08e-05
BDS, no limiting 8.87e-05 2.30 1.80e-05 2.09 4.22e-06
PPM, no limiting 2.30e-04 1.90 6.18e-05 1.98 1.57e-05
PLM, no limiting 2.64e-04 1.89 7.11e-05 1.98 1.80e-05

CLAW, no limiting 3.95e-04 1.86 1.09e-04 1.92 2.89e-05

at the coarsest resolution and 73% less at the finest resolution. Again, disabling the
limiters does not significantly affect the error or convergence of the methods (with
the exception being CLAW). In summary, this test confirms the conclusions from the
constant velocity advection test case in section 4.1.2.

4.4. Cylindrical Shear Layer. We now test the advection of a spherical step
function tracer profile in a three dimensional flow that varies in space and time to
ensure that our algorithm satisfies a maximum principle. We use a constant density of
ρ = 1 and let the velocity evolve using the algorithm of Almgren, et al. [2], which is an
incompressible Navier-Stokes solver based on the projection method of Bell, Colella,
and Glaz [4]. In this approach, velocities are guaranteed to be divergence-free to the
tolerance of the linear solvers, so the exact solution should not have significant new
maxima or minima relative to the initial data. The initial velocity field is given by
a cylindrical shear layer subject to a small transverse perturbation in the form of a
wide, flat Gaussian bump as originally used in [7]. We add an additional transverse
motion in the form of an initially constant y-velocity, so that the initial velocity is
completely specified as u = tanh{[0.15 −

√
(y − 0.5)2 + (z − 0.5)2]/0.333}, v = 0.25,

and w = 0.05 exp{−15[(x−0.5)2 +(y−0.5)2]}. The initial tracer profile is a spherical
step function:

s0(x, y, z) =

{
1, r ≤ 0.1

0, r > 0.1
; r =

√
(x− 0.375)2 + (y − 0.5)2 + (z − 0.5)2. (4.5)

As before, we run the simulation to t = 1 using a CFL number of 0.9 at three
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Table 4.11
Minimum and maximum scalar values for advection of a spherical step function at t = 1 in

a cylindrical shear layer. ∗The actual maxima for the 1283 and 2563 BDS simulations are 1 + ε,
where ε =3.17e-09 and ε =2.24e-07, respectively.

Scheme 643 Min 643 Max 1283 Min 1283 Max 2563 Min 2563 Max

Exact 0.00e-00 1.00000 0.00e-00 1.00000 0.00e-00 1.00000
BDS -4.26e-10 0.99999 -3.69e-09 1.00000∗ -7.49e-11 1.00000∗

PPM2 -1.16e-01 1.10916 -1.83e-01 1.15142 -2.60e-01 1.20912

Fig. 4.3. Results for advection of a spherical step function in a cylindrical shear layer using
2563 cells and the PPM2 algorithm at (Left) t = 0, (Middle) t = 0.3, and (Right) t = 1. The
gray contours lie at scalar values of 0.1, 0.5, and 0.9. The blue contour shows where the method
undershoots, encapsulating regions where s < −0.001, and the red contour show where the method
overshoots, encapsulating regions where s > 1.001. There are large continuous regions of both
undershoot and overshoot. The BDS results (not pictured) look very similar in overall shape, except
that there are no regions of overshoot/undershoot.

different resolutions. Here we compare BDS to PPM2 (the CLAWPACK libraries
are not directly compatible with our incompressible Navier-Stokes libraries). In Table
4.11, we report the minimum and maximum scalar values of our computed solutions at
t = 1. We do not have an exact solution available, but since the flow is divergence-free,
we know that the exact minimum and maximum bounds are 0 and 1 at any later time.
The BDS algorithm captures the maximum remarkably well, even for the coarsest
resolution where a peak value of 0.99999 is observed. The BDS algorithm undershoots
by at most O(10−9) and overshoots by O(10−7) at the finest resolution. The overshoot
behavior is slightly worse than we observed our previous test problems, but is reflective
of the tolerances in the multigrid solver (additional testing suggests that changes to
the solver tolerance lead to commensurate changes in the undershoot and overshoot).
By contrast, the PPM2 algorithm has a severe overshoot/undershoot of 12%/11%
at the coarsest resolution and 26%/21% at the finest resolution. Figure 4.4 shows
contours of the computed PPM2 solutions. We have highlighted the regions where
the PPM2 solution violates a maximum principle by using blue and red contours.
Note that the overshoot and undershoot occur over large, continuous regions.

5. Conclusions. We have developed an unsplit, three-dimensional Godunov-
type method for linear advection based on an extension of an algorithm of Bell,
Dawson and Shubin. The method is based on constructing a limited trilinear ap-
proximation of the solution on each grid cell. Fluxes for a conservative update are
constructed by integrating this trilinear approximation over the characteristic domain
of dependence of each face in three dimensions. The resulting method has the property
that for constant coefficient advection it is analytically equivalent to exactly advecting
the reconstructed profiles and averaging them onto the grid at the new time. As a



Three-Dimensional, Unsplit Godunov Method 23

consequence of this observation, the method satisfies a discrete maximum principle for
constant coefficient advection. Comparison of the new method with standard unsplit
approaches for general systems of conservation laws show that the new method has
lower errors and better shape-preservation properties than the more general schemes
and avoids the significant undershoot and overshoot that can plague those schemes
for non grid-aligned advection.

The extension of the method presented here to a more general scalar conserva-
tion law as done in [5] is straightforward. Of more interest would be the inclusion
of quadratic terms in the approximation, similar to the PPM methods. Including
quadratic terms in the present framework would allow us to improve the accuracy
of the scheme, particularly for smooth flows, without introducing issues of distortion
and the undershoot/overshoot observed in the more general methods. A first step in
that direction has been taken in May et al. [24], which considers a quadratic ver-
sion of the BDS scheme in two dimensions. Additional improvements to the scheme
could be made by introducing new limiting ideas discussed in the introduction that
avoid limiting at smooth extrema. These extensions will be discussed in future work.
Finally, we plan to incorporate the three-dimensional BDS scheme into large-scale ap-
plications codes for combustion, astrophysics and subsurface flow in which advection
by a specified velocity field places a central role.
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